Lyapunov, Floquet, and singular vectors for baroclinic waves
نویسنده
چکیده
The dynamics of the growth of linear disturbances to a chaotic basic state is analyzed in an asymptotic model of weakly nonlinear, baroclinic wave-mean interaction. In this model, an ordinary differential equation for the wave amplitude is coupled to a partial differential equation for the zonal flow correction. The leading Lyapunov vector is nearly parallel to the leading Floquet vector φ1 of the lowest-order unstable periodic orbit over most of the attractor. Departures of the Lyapunov vector from this orientation are primarily rotations of the vector in an approximate tangent plane to the large-scale attractor structure. Exponential growth and decay rates of the Lyapunov vector during individual Poincaré section returns are an order of magnitude larger than the Lyapunov exponent λ ≈ 0.016. Relatively large deviations of the Lyapunov vector from parallel to φ1 are generally associated with relatively large transient decays. The transient growth and decay of the Lyapunov vector is well described by the transient growth and decay of the leading Floquet vectors of the set of unstable periodic orbits associated with the attractor. Each of these vectors is also nearly parallel to φ1. The dynamical splitting of the complete sets of Floquet vectors for the higher-order cycles follows the previous results on the lowest-order cycle, with the vectors divided into wavedynamical and decaying zonal flow modes. Singular vectors and singular values also generally follow this split. The primary difference between the leading Lyapunov and singular vectors is the contribution of decaying, inviscidly-damped wave-dynamical structures to the singular vectors.
منابع مشابه
A New Invariance Property of Lyapunov Characteristic Directions
Lyapunov exponents and direction elds are used to characterize the time-scales and geometry of general linear time-varying (LTV) systems of di erential equations. Lyapunov exponents are already known to correctly characterize the time-scales present in a general LTV system; they reduce to real parts of eigenvalues when computed for linear time-invariant(LTI) systems and real parts of Floquet ex...
متن کاملDynamic Instability Analysis of Embedded Multi-walled Carbon Nanotubes under Combined Static and Periodic Axial Loads using Floquet–Lyapunov Theory
The dynamic instability of single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT) and triple-walled carbon nanotubes (TWCNT) embedded in an elastic medium under combined static and periodic axial loads are investigated using Floquet–Lyapunov theory. An elastic multiple-beam model is utilized where the nested slender nanotubes are coupled with each other through the van d...
متن کاملHydrodynamic Lyapunov Modes in Translation Invariant Systems
We study the implications of translation invariance on the tangent dynamics of extended dynamical systems, within a random matrix approximation. In a model system, we show the existence of hydrodynamic modes in the slowly growing part of the Lyapunov spectrum, which are analogous to the hydrodynamic modes discovered numerically by [Dellago, Ch., Posch, H.A., Hoover, W.G., Phys. Rev. E53, 1485 (...
متن کاملPropagation of longitudinal waves in a random binary rod
The one-dimensional wave equation describes many phenomena in physics [1]. In a periodic medium, the solution of the wave equation has a Floquet–Bloch structure. Very long waves propagate without attenuation and the medium can be viewed as homogeneous. However, for higher frequencies there are certain intervals (so-called gaps) where waves cannot propagate even though the system is perfectly co...
متن کامل